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Polynomial approximation by weighted polynomials of the form wn(x) Pn(x) is
investigated on closed subsets of the real line. It is known that the possibility of
approximation is closely related to the density of an extremal measure associated
with w via a weighted energy problem. It is also known that if in a neighborhood
of a point x0 this density is continuous and positive, then, in that neighborhood,
any continuous function can be approximated. The aim of the present paper is
twofold. On the one hand it is shown that the same approximation theorem is true
if in a neighborhood of x0 the density is slowly varying and is bounded away
from 0. This allows singularities of logarithmic types. On the other hand, we also
show that under some mild conditions, if the density at x0 is slowly varying, then
approximation is still possible even if the density vanishes at x0 . This is the first
positive result for approximation with a vanishing density. � 1999 Academic Press

1. INTRODUCTION AND MAIN RESULTS

Recently a lot of attention has been devoted to weighted polynomial
approximation with varying weights of the form wnPn , where the degree of
Pn is at most n, i.e., in this approximation the weight varies together with
the degree. Thus, Pn has to balance exponential oscillations in the weight,
and this kind of approximation is much harder than ordinary weighted
approximation.

This type of approximation has evolved from Lorentz' incomplete poly-
nomials (where w(x)=x: with some :>0 on [0, 1]), and appears in

Article ID jath.1998.3319, available online at http:��www.idealibrary.com on

258
0021-9045�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* Research was supported in part by the National Science Foundation, DMS-9415657, by
the Hungarian Academy of Sciences, Grant 96-328�11, and by the Hungarian Ministry of
Education, Grant MKM 1996�18; FKFP 0058.



several different problems. For example, it appears in asymptotic properties
of Freud type orthogonal polynomials (with w(x)=e&|x|: for some :>0
on the real line) where it was a major tool in resolving G. Freud's conjectures
by D. S. Lubinsky, E. A. Rahmanov, E. B. Saff, P. Nevai, A. Knopfmacher,
and H. N. Mhaskar, and where it also plays a key role in proving strong
asymptotics, as well (see the works [4, 5] by D. S. Lubinsky and E. B. Saff,
and [9] by the author). It also plays an important role in multipoint Pade�
approximation where orthogonal polynomials with respect to varying
weights appear in the error formula. Finally, we mention that it also has
connection with generalizations of Wigner's semicircle law in statistical-
mechanical models in statistical physics where it is related to finding the
distribution of energy levels of quantum particles. For a general reference
regarding this approximation, its history and its applications see the mono-
graphs [7, 9].

Let 7 be a closed subset of the real line, which, to avoid unnecessary
technical complications, we assume to be regular with respect to the Dirichlet
problem in C"7. Typically 7 consists of a finite number of intervals. Further-
more, let there be given a continuous and non-identically zero weight function
w on 7 with the additional property that |x| w(x) � 0 as |x| � � if 7 is
unbounded. We shall call such weights admissible.

We are interested in approximating continuous functions on 7 by
weighted expressions of the form wnPn , where Pn is a polynomial of degree
at most n. There is a Stone�Weierstrass-type theorem for this kind of
approximation (see [2]):

Theorem A. Let 7/R be a closed set and w a continuous admissible
weight on 7. Then there exists a closed set Z(w)/7 such that a continuous
function f on 7 is the uniform limit of weighted polynomials wnPn ,
n=1, 2, ..., if and only if f vanishes on Z(w).

Thus, the problem of what functions can be approximated is equivalent
to determining what points lie in Z(w). This latter problem is intimately
related to the density of the following extremal measure: let us define the
weighted energy integral of a Borel measure + as

Iw(+) :=|| log[|z&t| w(z) w(t)]&1 d+(z) d+(t),

and let us minimize Iw(+) for all probability Borel measures + with support
in 7. There is a unique measure +=+w minimizing the energy integral, this
+w has compact support, and w is strictly positive on the support of +w . +w

is called the extremal or equilibrium measure associated with w [7, Chap. I].
Now it turns out [9, Theorem 4.1] that all points outside the support
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supp(+w) of +w are bad points from the point of view of approximation, i.e.,
all such points belong to Z(w). On the other hand, we have [9, Theorem 4.2]

Theorem B. If +w has positive and continuous density (with respect to
linear Lebesgue measure) in a neighborhood of x0 , then x0 � Z(w).

This theorem has two assumptions. The first one, the continuity of the
extremal density, is not too restrictive; it is almost always satisfied in
applications, and it is automatically guaranteed if in a neighborhood of the
point x0 lying in the interior of the support of +w the weight is C1+=-
smooth for some =>0. In contrast, the second assumption, namely the
strict positivity of the weight is very essential; up to now there exists no
approximation theorem that applies to the case when the extremal density
vanishes. The reason for this is that under normal circumstances a zero in
the extremal density prevents approximation. In fact, it was shown by
A. B. J. Kuijlaars [1] that if the density of +w is of the form (1+o(1))_
c |t&x0 |* in a neighborhood of x0 with some *>0, then we have x0 # Z(w),
i.e., a power type zero forces x0 # Z(w), which in turn forces all functions f,
that are uniform limits of weighted polynomials wnPn , to vanish at x0 . We
shall see that a ``weaker than power type zero'' allows approximation under
rather general assumptions, thereby we shall obtain the first positive approx-
imation result for vanishing extremal density.

What about a singularity in the extremal density? As an illustration con-
sider the weights w(x)=e&|x|:, x # R with an :>0. In this case for :<1 the
extremal density has a singularity of the type (1+o(1)) c |t|:&1 around the
origin, while for :=1 the singularity of the type (1+o(1)) c log 1�|t| (for
:>1 the extremal density is continuous). Now it turns out that the former,
power type singularity is too strong: it was shown by A. B. J. Kuijlaars [1]
that if the density of +w is of the form (1+o(1)) c |t&x0 |* in a neigh-
borhood of x0 with some *<0, then we have x0 # Z(w), i.e. a power type
singularity implies x0 # Z(w), and hence in this case if f is uniformly
approximable by weighted polynomials wnPn , then necessarily f vanishes at
x0 . On the other hand, the logarithmic type singularity in the extremal
density for the weight w(x)=e&|x|, x # R, is too weak to prevent approxi-
mation, as was proven in [6]. It was shown by P. Simeonov [8] that a
logarithmic type singularity of the form c log 1�|t&x0 |+o(1) in the density
always allows approximation, i.e., in this case x0 � Z(w).

The aim of this paper is twofold: we extend these results to slowly vary-
ing singularities in the extremal density and also show that for the slowly
varying case the requirement that the density has a positive lower bound
in a neighborhood of x0 can be dropped under rather mild conditions.

To formulate the main theorems of the paper, let us introduce the follow-
ing definition (cf. [10, Sect. 1.2]): we say that a positive function v defined
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in a neighborhood [&a, a] of the origin is slowly varying at the origin, if
v is continuous on [&a, 0) _ (0, a], v(&t)�v(t) � 1 as t � 0, and for every
r>0 we have v(rt)�v(t) � 1 as t � 0+0. v is called slowly varying at a
point x0 if the function v*(t)=v(t+x0) is slowly varying at the origin.

If at a point x0 the function v is continuous and positive, then clearly it
is slowly varying. More typical examples are powers of absolute values of
log |x|, log |log |x| |, etc., their products and positive linear combinations of
such products. Faster growing or decreasing examples are the functions
exp(\log% 1�|x| ), 0<%<1. Here the case %=1 would mean a power type
zero or singularity, which does not allow slow variance anymore. Our main
theorems compared with the discussion after Theorem B show that there is
a major difference between the %<1 and %=1 cases from the point of view
of approximation. Note however, that a slowly varying function need not
tend to zero or infinity, it may happen that

lim inf
t � x0

v(t)=0 but lim sup
t � x0

v(t)=�. (1.1)

It is also easy to see [10, Theorem 1.2.1] that if v is slowly varying at the
origin, then uniformly for r lying in any interval [=, 1�=], =>0 we have
v(rt)�v(t) � 1 as t � 0+0.

One of our main results is

Theorem 1.1. Let us suppose that +w has a density v
*

(t) in a neighbor-
hood D of x0 such that v

*
(t) has a positive lower bound in D, it is continuous

in D except possible at x0 , and is slowly varying at x0 . Then x0 � Z(w).

This theorem includes the case of continuous positive weights, but it is
of real interest for weights for which v

*
(t) tends to infinity or slowly

oscillates around the point x0 .
A. B. J. Kuijlaars [1] found a transformation with which results about

inner points of the support can be transformed into results for endpoints of
the support. Using the same procedure we can state the following conse-
quence of Theorem 1.1.

Theorem 1.2 Let w be an admissible weight on 7, and let x0 # supp(+w)
be a point such that for some $>0 we have 7 & (x0&$, x0+$)=[x0 , x0+$).
Suppose that the extremal measure +w has density v

*
in a right neighborhood

of x0 that satisfies there

v
*

(t)=|t&x0 | &1�2 v
**

(t) (1.2)

with a function v
**

(t) that has a positive lower bound in that neighborhood,
is continuous in (x0 , x0+$), and is slowly varying at x0 . Then x0 � Z(w).
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In this theorem the slow variation of v
**

(t) is required only from one
side. Since the proof of this theorem requires the same transformation
(t � u2+x0) as was used in [1], and with this transformation it reduces
to Theorem 1.1, we shall only prove Theorem 1.1 (cf. also the discussion in
[7, Sect. 6.1]).

In our second main theorem we drop the requirement that v has a
positive lower bound around x0 provided its behavior elsewhere is not too
wild. This is the first positive result that ensures x0 � Z(w) even if v may
vanish at x0 . Note however, the theorem also applies to the case (1.1).

Theorem 1.3. Let the support of +w consist of finitely may intervals J j ,
and suppose that d+w(x)=v

*
(x) dx where v

*
is a continuous function inside

every Jj except for finitely many points, and v
*

has only finitely many zeros.
Assume further that if A=[ai] is the set consisting of the zeros and discon-
tinuities of v and of the endpoints of the intervals Jj , then for each i either
v
*

is slowly varying at ai , or there is a $i>&1 such that v(t)t |t&ai |
$i in

a neighborhood of ai . Under these conditions of x0 is an inner point of the
support of +w and v

*
is slowly varying at x0 , then x0 � Z(w).

Here we used the notation AtB to indicate that the ratio of the two
sides lies in between two positive constants.

A similar statement holds when x0 is an endpoint of one of the intervals
Jj , see Theorem 1.2.

We do not know if the theorem holds without any restriction on v
*

away
from the point x0 . This problem can be reformulated as if in Theorem 1.1
the positive lower boundedness of v

*
in a neighborhood of x0 can be

dropped. Nevertheless, the theorem is sufficiently general to cover all the
interesting cases and is sufficiently convenient in applications.

In the next section we shall prove Theorem 1.1 based on several lemmas
on slowly varying weights, the proof of which will be given in the last
section of the paper. Theorem 1.3 will be proven in Section 3.

2. PROOF OF THEOREM 1.1

Let us suppose that in a neighborhood of the point x0 the extremal
measure +w has a density that is bounded from below by a positive constant,
continuous in that neighborhood with the possible exception of the point x0 ,
and is slowly varying at x0 . We have to prove that under these assumptions
x0 � Z(w), and to this end it is enough to show that some function f with
f (x0){0 is the uniform limit on 7 of weighted polynomials wnPn . Without
loss of generality we assume that x0=0.
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Let v
*

(t) be the density of +w in a neighborhood of 0, say in [&r, r],
and let 2d

*
>0 be a lower bound for v

*
in that neighborhood. Let us select

and fix an 0<:<r, an integer m and a continuous function h
*

(t)�v
*

(t)
on [&:, :] in such a way that d

*
�h

*
(t), and we have

|
:

0
(v

*
(t)&h

*
(t)) dt=

1
2m

, |
0

&:
(v

*
(t)&h

*
(t)) dt=

1
2m

. (2.1)

This is always possible. For example, start with selecting h1(t)=d
*

for
t # [&:, :], where a small : is selected so that one of the equalities in (2.1)
(with h

*
replaced by h1) holds with some integer m�2, and the integral in

the other equality is �1�2m. Suppose, for example, that we have equality
over the interval [0, :]. The infimum of

|
0

&:
(v

*
(t)&h2(t)) dt

for all continuous functions h2(t) on [&:, :] subject to the conditions
v
*

(t)�h2(t)�d* for t # [&:, 0], h2(t)=d
*

for t # [0, :], is clearly zero
(recall that v* is continuous away from the origin), therefore there is such
an h2 for which the preceding expression is smaller than 1�2m. Now an
appropriate convex linear combination of h1 and h2 is suitable for h

*
.

We set v(t)=m(v
*

(t)&h
*

(t)) if t # [&:, :] and v(t)=0 otherwise, and
let w1(x)=exp(U v(x)), where

U v(x)=| log
1

|x&t|
v(t) dt

is the logarithmic potential associated with v. We also set

w2(x)=(w(x)�w1(x)1�m)m�(m&1).

If we define d+2(x)=(m�(m&1)) d+w(x) for x � [&:, :] and d+2(x)=
(mh

*
(x)�(m&1)) dx for x # [&:, :], then the potential U +2(x) equals

m
m&1 \U +w(x)&

U v(x)
m + ,

and since supp(+2)=supp(+w), it follows from the defining properties of
equilibrium measures that here +2 is the equilibrium measure for w2 , i.e.
+2=+w2

. In fact, the extremal measure +w in the weighted energy problem
has the characterization (see [7, Theorems I.1.3 and I.3.3]) that with some
constant Fw we have

U+w(x)=log w(x)+Fw for x # supp(+w), (2.2)

263WEIGHTED POLYNOMIAL APPROXIMATION



and

U+w(x)�log w(x)+Fw for x # 7"supp(+w). (2.3)

Now if we use this for w and +w , then we can see that the same relations
hold true for w2 and +2 and this proves +w2

=+2 .
Hence, +w2 has the positive and continuous density (m�(m&1)) h

*
(t) on

(&:, :), so by Theorems A and B any continuous function that vanishes
outside this interval is a uniform limit of weighted polynomials wn

2Rn with
deg (Rn)�n.

Let f be such a continuous function which does not vanish at the origin,
but vanishes outside (&:�2, :�2). It is enough to show that this f can be
uniformly approximated by weighted polynomials wnPn . According to
what we have just established, for every n there are polynomials R4(m&1) n

of degree at most 4(m&1) n such that

w4(m&1) n
2 (x) R4(m&1) n(x) � f (x), as n � � (2.4)

uniformly in x # 7. Now we invoke the following theorem to be proven
below.

Theorem 2.1. For every n there are polynomials S4n of degree at most
4n such that w4n

1 (x) S4n(x) � 1 as n � � uniformly on compact subsets of
(&:, :), and such that the functions [w4n

1 (x) |S4n(x)|]n are uniformly bounded
on the real line; more precisely

lim
n � �

&w4n
1 S4n&�=1. (2.5)

Then w4n
1 w4(m&1) n

2 S4n R4(m&1) n uniformly tends to f on 7, for the
weighted polynomials w4(m&1) m

2 R4(m&1) n uniformly tend to zero outside
the interval [&:�2, :�2], and the weighted polynomials w4n

1 S4n are
uniformly bounded there. Furthermore, here the degree of S4nR4(m&1) n is
at most 4mn, while w4n

1 w4(m&1) n
2 =w4mn by the choice of the function w2 .

This proves the existence of weighted polynomials wkPk converging to f for
the sequence of degrees [k=4mn]�

n=1 . To convert this argument into one
which covers all degrees k, all we have to do is to choose, instead of (2.4),
for each s=0, 1, ..., 4m&1 polynomials R4(m&1) n, s of degree at most
4(m&1) n in such a way that

w4(m&1) n
2 (x) R4(m&1) n, s(x) � f (x)�ws(x)

uniformly on 7 (recall that f vanishes outside [&:�2, :�2] and w is
positive on [&:, :] because it is positive on the support of +w). Then the
products w4n

1 w4(m&1) n
2 S4n R4(m&1) n, s uniformly tend to f�ws as n � �, and
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so by setting Pk=S4nR4(m&1) n, s for k=4mn+s, n=1, 2, ..., s=0, 1, ...,
4m&1 we have wkPk � f uniformly, and the proof is complete pending the
proof of Theorem 2.1.

Proof of Theorem 2.1. It is clear from the definition of v(t) and from the
assumption of the theorem that v(t) is slowly varying at the origin.
Furthermore, v(t) has equal integrals 1�2 on (&:, 0) and on (0, :) by its
definition. Without loss of generality we may assume that :=1, for other-
wise we can consider the density v*(t)=:v(:t). Since we have U v(:x)=
Uv*(x)+log 1�:, and this constant can be incorporated into the polyno-
mials, the statement of Theorem 2.1 for v and : and for v* and :=1 are
equivalent.

It is enough to prove that for every n there are polynomials Q*2n of degree
at most 2n such that w2n

1 (x) |Q*2n(x)| � 1 uniformly on compact subsets of
(&1, 1), and such that the supremum norm on the real line of the function
w2n

1 (x) |Q*2n(x)| tends to 1 as n � �, for then we can set S4n(x)=|Q*2n(x)|2

(which is again a polynomial).
We divide the interval [&1, 1] into 2n subintervals

Ij, n=I j , j=&n, ..., &1, 1, ..., n

by the points xj, n=xj for which

|
xj, n

0
v(t) dt=

j
2n

, j=&n, ..., n.

In particular, x0=0, x&n=&1 and xn=1. If we set Ij, n=[xj&1, n , x j, n] for
j=1, ..., n and Ij, n=[xj, n , xj+1, n] for j=&n, ..., &1, then �j Ij, n=[&1, 1],
and [Ij, n] j is a partition of [&1, 1] into subintervals with the property

|
Ij, n

v(t) dt=
1

2n
. (2.6)

We fix a number 0<a<1 arbitrarily. Let

!j, n=2n |
Ij, n

tv(t) dt (2.7)

be the weight point of v on Ij, n , and with some large, but fixed positive
integer L�4 we define the polynomial

Q2n(x)= `
j{0

(x&!j, n+iL |I j, n | )
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of degree 2n. We claim that an appropriate constant multiple of these
polynomials satisfy the requirements provided we shall let L � � very
slowly compared to n.

Since

w2n
1 (x) |Q2n(x)|=e2nUv(x) |Q2n(x)|=exp(2nU v(x)+log |Q2n(x)| ),

and here

2nU v(x)+log |Q2n(x)|

= :
j{0

2n |
Ij, n

(log |x&!j, n+iL |I j, n | |&log |x&t| ) v(t) dt,

we have to estimate

:
j{0

2n |
Ij, n

log }x&! j, n+iL |Ij, n |
x&t } v(t) dt, (2.8)

which is the difference 71&72 of

71 := :
j{0

2n |
Ij, n

log } x&t+iL |I j, n |
x&t } v(t) dt

and

72 := :
j{0

2n |
Ij, n

log } x&t+iL |I j, n |
x&! j, n+iL |Ij, n | } v(t) dt,

and we shall separately consider these two sums. We are going to prove
that for x # [&a, a] (where 0<a<1 is the number that was fixed above)
we have 71=(1+o(1)) cL+O(L&1�2), while for all x # R the estimates
71�(1+o(1)) cL+O(L&1�2) and 72=O(L&1�2) are true as n � �, where
cL is a constant depending only on L and cL � � as L � �. These rela-
tions should be understood as n � �; more precisely they hold in the
following sense. For every fixed L�4 and 0<a<1 the o(1) terms tend to
0 as n � �, and their convergence to 0 is uniform in x # [&a, a] or x # R,
respectively. The constants in the O(L&1�2) terms are independent of L
(and x # [&a, a] or x # R, respectively), provided n is sufficiently large; in
other words there is an absolute constant C, and for all fixed L�4 and
0<a<1 there is a number na, L such that if n�na, L , then the absolute
value of the O(L&1�2) terms are less than CL&1�2 independently of x #
[&a, a] or x # R, respectively. Now these estimates show that if L=Ln

tends very slowly to � compared to n, then for the polynomials Q*2n(x)=
e&cLnQ2n(x) the weighted expression exp(2nU v(x)) |Q*2n(x)| uniformly
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converges to 1 on every closed subinterval of (&1, 1), and at the same time

lim
n � �

&exp(2nU v) Q*2n &�=1

holds, which clearly implies (2.5) for the polynomial S4n=|Q*2n(x)| 2. This
completes the proof of Theorem 2.1. K

For later use let us mention the following. Let =>0, and x # R"
[&1&=, 1+=]. If n is large enough, then in the estimate of 71 below the
terms in 731 are missing, and this 731 accounts for the constant cL above.
Therefore, uniformly for x � [&1&=, 1+=] we have 71=O(L&1�2) and
72=O(L&1�2). Furthermore cL � � as L � � (see (2.11) below), there-
fore the weighted expression e2nUv(x) |Q*2n(x)| tends to zero uniformly
outside [&1&=, 1+=]. We record this fact as

e2nUv(x) |Q*2n(x)| � 0 (2.9)

uniformly outside [&1&=, 1+=] (provided L=Ln � � very slowly
compared to n � �).

2.1. Estimate of 71

It is shown in Lemma 7 in Section 4 below that, as n � �, uniformly in
x # R and j the j th term in 71 is (1+o(1)) times

1
|Ij, n | |Ij, n

log }x&t+iL |Ij, n |
x&t } dt,

therefore it is enough to estimate the sum of these terms, i.e. to estimate

73 := :
j{0

1
|Ij, n | |Ij, n

log }x&t+iL |Ij, n |
x&t } dt.

Without loss of generality we may assume x�0. Let x # Ij0 , and let us
break the preceding sum for summation over | j& j0 |�L3 and the rest, i.e.,

73= :
| j& j0|�L3

+ :
| j& j0|>L3

=731+732 .

Let x=xj0&1, n+ y |Ij0, n |, 0� y�1, and let us also write the variable
t # Ij, n , | j& j0 |�L3 in the form t=xj&1, n+{ |Ij, n |, 0�{�1 (if Ij, n

happens to lie in [&1, 0], then this has to be modified to t=xj, n+{ |Ij, n |,
but for simplicity we keep the preceding notation for such Ij, n 's, as well).
On making use of the substitution t � { we obtain
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1
|Ij, n | |Ij, n

log } x&t+iL |I j, n |
x&t } dt

=|
1

0
log } (x j0&1, n&xj&1, N)�|Ij, n |+ y&{+iL+ y( |I j0, n |�|Ij, n |&1)

(x j0&1, n&xj&1, n)�|Ij, n |+ y&{+ y( |Ij0, n |�|Ij, n |&1)
| d{

=|
an, j( y)+1

an, j( y)
log }y&t+iL

y&t } dt, (2.10)

where

an, j ( y)=&(xj0&1, n&xj&1, n)�|Ij, n |& y( |I j0, n |�|Ij, n |&1).

For each j with | j& j0 |�L3 we have by Lemma 5 that |Ij, n |�|Ij0, n | � 1 as
n � �, and the same lemma also implies that then

(xj0&1, n&xj&1, n)�|Ij, n | � j0& j,

which means that each an, j ( y) tends to j& j0 uniformly in y as n � �.
Therefore, the last integral in (2.10) tends to

|
j& j0+1

j& j0
log } y&t+iL

y&t } dt,

and all together we obtain that as n � �

731 =(1+o(1)) :
| j& j0|�L3

|
j& j0+1

j& j0
log } y&t+iL

y&t } dt

=(1+o(1)) |
L3+1

&L3
log } y&t+iL

y&t } dt.

Since for y # [0, 1] and |t|�L3 we have

log } y&t+iL
y&t }=1

2
log \1+

L2

( y&t)2+�
L2

( y&t)2 ,

and the integral of the right hand side for t # (&�, &L3) _ (L3+1, �) is
at most 2�L, we finally conclude that

731 =(1+o(1)) |
�

&�
log } y&t+iL

y&t } dt+O \1
L+

=(1+o(1)) cL+O \1
L+ ,

268 VILMOS TOTIK



because the last integral is actually independent of y. Simple contour
integral transformation or integration by parts shows that cL=?L, but we
shall only use that

cL=
1
2 |

�

&�
log

t2+L2

t2 dt � � (2.11)

as L � �, which is perfectly clear. Note also, that here the constant in the
error term O(1�L) is independent of L, in fact, this error term is less than
3�L for sufficiently large n.

Next we estimate 732 . For x # Ij0, n , t # Ij, n and | j& j0 |>L3 we have

log }x&t+iL |Ij, n |
x&t }=1

2
log \1+

L2 |Ij, n | 2

(x&t)2 +�
2L2 |Ij, n | 2

(xj0, n&xj, n)2

(see Lemma 5 which easily implies that |x&t|�|xj0, n&xj, n |�2 if n is
sufficiently large), and by Lemma 6 here

(xj0, n&xj, n)2�c | j0& j |11�6 |Ij, n |2 (2.12)

with some positive constant c independent of j, j0 , and n. Hence

732�C :
| j& j0|�L3

L2

| j& j0 | 11�6�
C

L1�2 ,

and the constant C here is independent of L.
Summarizing our estimates in this subsection we can state that for

x # [&a, a] and sufficiently large n, say n�na, L , we have

71=(1+o(1)) cL+O(L&1�2), (2.13)

where the constant in O is independent of L.
If we glance at this proof for other x # [&1, 1] we see that actually

(2.13) holds for all x around which L3 intervals on both sides belong to
[&1, 1] (i.e., for which n&L3> j0>&n+L3). When this condition is not
satisfied, then the sum in 731 does not contain all the terms, so we can only
say that then

0�71�(1+o(1)) cL+C(L&1�2), (2.14)

is true with some constant C independent of x # [&1, 1] and L provided
n is sufficiently large.

Finally, if x � [&1, 1], then (2.14) follows from its validity for x # [&1, 1].
In fact, for any t # [&1, 1] the function

log }x&t+iL |Ij, n |
x&t }
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is a positive function of x which is decreasing on the interval [1, �), and
is increasing on the interval (&�, &1], therefore, the validity of (2.14) for
x=\1 implies the same inequality for x # (&�, &1] _ [1, �).

Thus, (2.14) is uniformly true for all x # R for all large n with the C and
o(1) independent of L.

2.2. Estimate of 72

We write

log } x&t+iL |I j, n |
x&! j, n+iL |I j, n | }=log }1+

!j, n&t
x&!j, n+iL |I j, n | },

and note that for t # Ij, n here the last ratio is necessarily smaller than 1�L
in absolute value. Therefore

log } x&t+iL |Ij, n |
x&!j, n+iL |I j, n | }
=R log \1+

! j, n&t
x&!j, n+iL |I j, n |+

=R
!j, n&t

x&!j, n+iL |Ij, n |
+O \ (!j, n&t)2

(x&!j, n)2+L2 |Ij, n |2+ .

The real part on the right hand side equals

(!j, n&t) R
1

x&!j, n+iL |Ij, n |
=(!j, n&t) c(x, j),

where c(x, j) is independent of t. But, by the definition of the weight point
!j, n , the integral of this real part against v(t) over Ij, n is zero:

|
Ij, n

(! j, n&t) c(x, j) v(t) dt=0.

Therefore, using also (2.6) it follows that

2n |
Ij, n

log } x&t+iL |Ij, n |
x&!j, n+iL |Ij, n | } v(t) dt=O \ (!j, n&t)2

(x&!j, n)2+L2 |Ij, n | 2+
=O \ |Ij, n |2

(x j0, n&xj, n)2+L2 |Ij, n |2+
where the constant in O is independent of x, j and n. Now the sum of these
terms for | j& j0 |�L is at most C(2L+1)�L2�C�L (where the two C 's on
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the two sides are not necessarily the same), while for the sum with
| j& j0 |>L we obtain from Lemma 6 the bound

C :
| j& j0|>L

1
| j& j0 | 3�2�

C
L1�2 .

These estimates show that 72�C�L1�2, and this is what we needed to
prove.

Note that this proof works for all x # R (see also the proof of (2.14) for
all x # R in the preceding subsection).

3. PROOF OF THEOREM 1.3

Let us suppose that in a neighborhood of the point x0 the extremal
measure +w has a density that is continuous in that neighborhood with
the possible exception of the point x0 , and is slowly varying at x0 , and
otherwise this density is continuous and positive with a finite number of
exceptions where it has a power type or slowly varying behavior. Note that
we do not assume now any lower bound on the density around the point
x0 . We have to prove that under these assumptions x0 � Z(w), and to this
end it is enough to show that some function f with f (x0){0 is the uniform
limit on 7 of weighted polynomials wnPn . Without loss of generality we
assume that x0=0.

Let v
*

(t) be the density of +w . Let us select and fix a small 0<:, so that
in [&:, :] the function v

*
is continuous with the only possible exception

of the point 0. Then choose a function 0�h
*

(t)�v
*

(t) on the interior of
the support Sw of +w with the following properties:

v h
*

(t)=v
*

(t) if t � [&:, :],

v h*(t)=0 if t # [&:�2, :�2],

v 0<h
*

(t)<v
*

(t) if t # [&:, &:�2] _ [:�2, :],

v h
*

(t) is linear in a left, resp. in a right neighborhood of &:�2 and
:�2, respectively,

v h
*

(t) is continuous on [&:, :], and

|
:

0
(v

*
(t)&h

*
(t)) dt=

1
2m

, |
0

&:
(v

*
(t)&h

*
(t)) dt=

1
2m

,

where m�2 is some positive integer. Using the slow variation of v
*

around
0, and by selecting : sufficiently close to the origin, it is not difficult to see
with the method of Section 2 that it is always possible to select such an h

*
.
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As in Section 2 we set v(t)=m(v
*

(t)&h
*

(t)) if t # [&:, :] and v(t)=0
otherwise, and let w1(x)=exp(U v(x)),

w2(x)=(w(x)�w1(x)1�m)m�(m&1). (3.1)

Exactly as in Section 2 the equilibrium measure for w1 has density m(v
*

&h
*

),
while the equilibrium measure for w2 has density (m�(m&1)) h

*
.

We are going to prove

Theorem 3.1. Let &:�;<#�: be fixed. Then for every n there are
nonnegative polynomials S ;, #

4n of degree at most 4n such that w4n
1 (x) S ;, #

4n (x)
� 1 as n � � uniformly on compact subsets of (;, #), w4n

1 (x) S ;, #
4n (x) � 0

uniformly on every set R"[;&=, #+=], =>0, and such that the functions
[w4n

1 (x) |S ;, #
4n (x)|]n are uniformly bounded on the real line with a bound

independent of &:�;, #�:.

Let f be an arbitrary nonnegative continuous function with compact
support in (&:�2, :�2). It is easy to see that if M is given, then there
are intervals [;k , #k], 1�k�N in [&:, :] such that all the numbers
[;k , #k]N

k=1 are distinct, and if /k denotes the characteristic function of
[;k , #k], then

} f (x)&
1
N

:
N

k=1

/k(x)}� 1
M

.

Now if

S4n(x)=
1
N

:
N

k=1

S ;k, #k
4n (x),

then from the listed properties of the polynomials S ;, #
4n it follows that

w4n
1 S4n is close to the function f;

lim sup
n � �

& f&w4n
1 S4n&��

C
M

,

where C is independent of M (depends only on the bound for the weighted
polynomials in Theorem 3.1). Therefore, by letting M � � very slowly
compared to n, we get a sequence of polynomials S4n for which w4n

1 S4n

uniformly converges to f on the real line.
This result immediately leads to its own generalization: the same thing

can be achieved by polynomials S4n&in of degree at most 4n&in , where
[in] is a sequence converging to infinity,

lim
n � �

& f&w4n
1 S4n&in &�=0. (3.2)

272 VILMOS TOTIK



In fact, all we have to do is to approximate f�ws
1 as above,

lim
n � �

& f�w s
1&w4n

1 S4n &�=0,

which, after multiplication through by ws
1 yields

lim
n � �

& f&w4n+s
1 S4n&�=0. (3.3)

Now this implies that there is a sequence sn � � of integers such that
together with (3.3)

lim
n � �

& f&w4n+sn
1 S4n&�=0

also holds, and this is (3.2) in a different form.
Next we use

Theorem 3.2. Let w2 be any weight function on 7 such that its equi-
librium measure has a density that satisfies the hypothesis of Theorem 1.3,
and such that (&:�2, :�2) is disjoint from the support of +w2

, but

U+w2(x)=log w2(x)+Fw2
(3.4)

holds on the interval (&:�2, :�2) (cf. (2.2)). Let further in � � arbitrarily.
Then there is a sequence R4(m&1) n+in of polynomials of corresponding degree
4(m&1) n+in , n=1, 2, ..., for which w4(m&1) n

2 R4(m&1) n+in are uniformly
bounded on compact subsets of 7, and

w4(m&1) n
2 R4(m&1) n+in(x) � 1

uniformly on compact subsets of (&:�2, :�2).

We can apply this theorem to the w2 defined in (3.1), because for this
weight the extremal measure has density (m�(m&1)) h

*
that satisfies the

hypothesis of Theorem 3.2 by the assumptions in Theorem 1.3 and by the
construction of the function h

*
(in fact, this construction was done so as

to facilitate the assumptions in Theorem 3.2), and (3.4) also holds because
the same inequality was true for +w and +w1

(note that in both cases the
interval [&:�2, :�2] belongs to the support of +w and +w1

).
Now the product weighted polynomials

w4n
1 w4(m&1) n

2 S4n&in R4(m&1) n+in = w4mnS4n&in R4(m&1) n+in

=: w4mnP4mn
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with S4n&in from (3.2) uniformly tend to f on compact subset of 7, for the
weighted polynomials w4n

1 S4n&in uniformly tend to zero outside the support
of f (lying in the interval [&:�2, :�2]), and the weighted polynomials
w4(m&1) m

2 R4(m&1) n+in are uniformly bounded there on compact subsets,
while on the support itself we have convergence to f and 1, respectively.

From here one can go to a full sequence wnPn satisfying the requirements
locally uniformly exactly as in Section 2.

Finally, we have to show that local uniform convergence implies uniform
convergence for wnPn . If 7 is compact, then we are done. If 7 is unbounded,
then let I be an interval containing the support of the extremal measure +w

such that outside I we have

U+w(x)�log w(x)+Fw+1. (3.5)

Since we have assumed that |x|w(x) � 0 as |x| � �, there is such an I. It
is well known (see, for example, [7, Theorem III.2.1]) that

|Pn(x)|�&wnPn&I exp(n(&U +w(x)+Fw))

for all x # R. Now multiplying this with wn(x) and making use of (3.5) we
can conclude that if [wnPn] is uniformly bounded on I, then it uniformly
tends to 0 outside I, and with this the proof of Theorem 1.3 is complete
pending the proofs of Theorems 3.1 and 3.2.

Thus, to complete the proof of Theorem 1.3 we have to verify these two
theorems.

3.1. Proof of Theorem 3.1

Here we follow the construction in the proof of Theorem 2.1, scale
[&:, :] to [&1, 1], and denote the image of the density m(v

*
&h

*
) under

this scaling by v. Let w1(x)=exp(U v(x)), where U v denotes the potential of
the measure with density v.

Consider the polynomials

Q2n(x)= `
j{0

(x&!j, n+iL |I j, n | )

constructed in that proof. We have seen that exp(2nU v(x)) |Q2n(x)| e&cLn is
uniformly bounded on the real line, it converges to 1 uniformly on compact
subsets of (&1, 1), and uniformly converges to 0 outside every interval
[&1&=, 1�+=] (cf. (2.9)).

Now let &1�;<#�1 be arbitrary. We prove the theorem by moving
the zeros !j, n&iL�|Ij, n | with !j, n � [;, #] to the real axis, that is by replac-
ing the factors (x&!j, n+iL�|Ij, n | ) in Q2n with ! j, n � [;, #] by (x&!j, n).
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Let Q� 2n be the polynomial that we obtain this way. Note that this opera-
tion cannot increase the absolute value of the polynomial at any point of
the real line, i.e., for x # R we have |Q� 2n(x)|�|Q2n(x)|, thus the uniform
boundedness of w2n

1 |Q� 2n | on R follows from that of w2n
1 |Q2n | (recall that

Q2n has degree 2n).
For any x # [&1, 1] the above change of roots introduces the factor

`
!j, n � [;, #]

|x&!j, n |2

|x&!j, n | 2+L2 |Ij, n |2 (3.6)

in the square of the absolute value of the polynomial, and on the intervals
[&1, ;&=] and [#+=, 1] this is at most 1�L2 just by looking at the factor
for which x # Ij, n . Since L=Ln � �, this proves that the polynomials
converge uniformly to 0 on any interval [&1, ;&=] and [#+=, 1]. Next
we show that this implies uniform convergence to 0 on (&�, &1] and on
[1, �), as well. In fact, on using (2.8) we see that the logarithm of
w2n

1 (x) |Q� 2n(x)| is a sum of the terms

2n |
Ij, n

log } x&!j, n+ilj

x&t } v(t) dt,

where lj=L |I j, n | for !j, n # [;, #] and lj=0 if !j, n � [;, #]. Thus, it is
enough to verify that each of these terms is nonnegative, and monotone
decreasing on [1, �) and monotone increasing on (&�, &1]. The
nonnegativity has to be checked only for lj=0 and then it is an immediate
consequence of Jensen's inequality for convex functions, since &log |x&t|
is a convex function of t # (&1, 1) for x � (&1, 1), and !j, n was chosen to
be the weight point of v on Ij, n . On taking derivative, the monotonicity on,
say, [1, �) amounts the same as

2n |
Ij, n \

x&!j, n

(x&!j, n)2+l2
j

&
1

x&t+ v(t) dt�0.

It is enough to verify this for l j=0, in which case it follows by another
application of Jensen's inequality, because 1�(x&t) is a convex function of
t # (&1, 1) for any x lying in [1, �).

Finally, if x # [;+=, #&=], then the reciprocal of the factor in (3.6) is at
most

`
!j, n � [;, #]

\1+
L2 |Ij, n |2

|x&!j, n | 2+ ,
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the logarithm of which can be estimated from above as

L2 max
j

|Ij, n | :
!j, n � [;, #]

|Ij, n |
|x&!j, n |2 .

Here the factor in front of the summation tends to zero as n � � (recall
that L=Ln � � very slowly, so we may assume that L2 maxj |Ij, n | � 0).
The sum itself converges to

|
t # [&1, ;] _ [#, 1]

1
(x&t)2 dt�

2
=

,

and we obtain that the factor (3.6) is (1+o(1)) on compact subsets of
(;, #). Therefore, together w2n

1 |Q2n |, also the function w2n
1 |Q� 2n | converges

to 1 uniformly on compact subsets of (;, #), and the proof is complete.

3.2. Proof of Theorem 3.2.

In this proof we closely follow the proof of [7, Theorem VI.4.2]. There
the following result was proved:

Theorem C. Let + be a measure of total mass 1 and suppose that
supp(+) is an interval J, and d+(x)=v(x) dx where v is a continuous function
inside J except for finitely many points, and v has only finitely many zeros.
Assume further that if A=[ai] is the set consisting of the zeros and discon-
tinuities of v and of the endpoints of the interval J, then for each i there is
a $i>&1 such that v(t)t |t&ai |

$i in a neighborhood of ai . Then there are
polynomials

Pn(x)= `
n&1

j=0

(x&!j)

with all their zeros in the support of + such that, for some constant C,

|Pn(x)|�C exp(&nU +(x))

for all x # R.

The relation v(t)t |t&ai |
$i is assumed only from one side if a i is an

endpoint of a subinterval of supp(+).
It is not difficult to see that the proof of Theorem C remains valid if,

instead of power type singularities and zeros, we also allow slow variance
of v at certain points of A; we shall not go into details regarding this fact,
just mention that a slowly varying function behaves more regularly than a
function of type v(t)t |t&ai |

$i, and it is at least as easy to handle as the
latter one.
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We shall, however, need an extension of Theorem C to the effect that the
polynomials constructed in the proof of [7, Theorem VI.4.2] also satisfy

exp(&nU+(x)) |Pn(x)| � 1 (3.7)

uniformly outside every neighborhood of J. To see that we have to recall
how the polynomials Pn were constructed in [7]. In fact, this construction
has much in common with what we have used in this paper, and it runs as
follows.

Let n be an even number (when n is odd, use n&1 in place of n below,
and add appropriately one more zero to get exact degree n). Partition
J=: [a, b] by the points a=t0<t1< } } } <tn=b into n intervals Ij ,
j=0, 1, ..., n&1 with +(Ij)=1�n, and let !j be the weight point of the
restriction of + to Ij ; i.e.,

!j=n |
Ij

tv(t) dt. (3.8)

Set

Pn(t)= `
n&1

j=0

(t&!j).

It was shown in [7, Theorem VI.4.2] that these Pn satisfy the requirements
of Theorem C. Now we indicate why (3.7) is true. For x � J write

&log |Pn(x)|&nU+(x)= :
n&1

j=0

n |
Ij

log } x&t
x&!j } v(t) dt=: :

n&1

j=0

Lj (x). (3.9)

Since the function log |x&t| is concave on Ij , we have by Jensen's
inequality

n |
Ij

log |x&t| v(t) dt�log |x&!j | ,

and hence every term Lj (x) in (3.9) is at most 0. This proves that

exp(&nU+(x)) |Pn(x)|�1 (3.10)

for all x � J.
We can write the integrand in Lj (x) as

log } 1+
!j&t
x&! j }=

!j&t
x&! j

+O \} !j&t
x&!j }

2

+ .
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Now utilizing the weight point property of !j it follows that

Lj (x)=n |
Ij

O \} !j&t
x&!j }

2

+ v(t) dt

=O \ |Ij |
2

(x&!j0)
2+ , (3.11)

because the integrals

|
Ij

|!j&t|
x&!j

v(t) dt

vanish. Thus, as n � �

:
j

Lj (x)�max
j

|Ij | :
j

|Ij |
(x&!j)

2 � 0

uniformly outside any neighborhood of J, because the factor in front of the
sum tends to zero, and the sum itself converges to the integral

|
J

1
(x&t)2 dt.

These prove the claim concerning (3.7). Note that up to now the degree of
the polynomial Pn matched the exponent in exp(nU+(x)).

Now suppose that the support of + consists of the intervals J1 , ..., Jk . Set
:j=+(Ji), and choose numbers nj such that their sum is n, and for every
j=1, ..., k we have |nj&[:j n]|�1. Since the sum of the :j 's is &+&=1, this
is clearly possible. Now we can apply the preceding consideration to every
measure +j=(1�:j) +| Jj and to the degrees nj to get polynomials Pnj of
degree nj with all their zeros lying in Jj that satisfy Theorem C on Jj with
+ etc. replaced by +j etc. We can write with the product polynomial

Pn(x)= `
k

j=0

Pnj (x)

of degree n the product exp(nU+) Pn in the form

exp(nU+(x)) Pn(x)=`
j

exp(nj U+j (x)) Pnj (x) exp(U &n(x)),

where

&n=n+&:
j

n j +j=n :
j

:j+ j&:
j

nj+ j=:
j

(n: j&n j) + j .
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Therefore, by Theorem C and (3.7) for the measures +j it follows that

exp(nU+(x)) |Pn(x)| exp(&U &n(x))

are uniformly bounded on the real line, and tend to 1 on compact subsets
of the complement of the support of the measure +. In particular, this holds
for all degrees 4(m&1) n instead of n. Since here the degree of P4(m&1) n is
at most 4(m&1) n, while in Theorem 3.2 we are allowed degree
4(m&1) n+in where in tends to infinity, we can use the excess degree to
get rid of the factor exp(&U &n(x)). In fact, it is easy to see that the
measures &n are from the set

� {j+j , &1�{j�1 for all j,

and the potentials of the measures in this set are uniformly equicontinuous
on every bounded subinterval of the real line (because the potentials of
each +j are continuous everywhere). Thus, exp(U &n) is a uniformly equicon-
tinuous set of functions on every finite subinterval of R, and as such can
be uniformly approximated by polynomials, i.e. there are polynomials Tin
of degree at most in such that

Tin(x) exp(U &4(m&1)n (x)) � 1

uniformly on every finite subinterval of R (in fact, this is an immediate
consequence of Jackson's theorem on polynomial approximation). Thus,
for the choice R4(m&1)n+in (x)=P4(m&1)n (x) Tin(x), all the properties set
forth in Theorem 3.2 are satisfied.

4. LEMMAS ON SLOWLY VARYING FUNCTIONS

In what follows we shall prove several lemmas that are used in the proof
of the main theorem of the paper. In this section v denotes a weight func-
tion on [&1, 1] with total integral 1 that is continuous and positive on
[&1, 0) _ (0, 1] and slowly varying around 0. We also assume that

|
1

0
v=|

0

&1
v= 1

2 .

Note that we do not assume that v has a positive lower bound on [&1, 1],
i.e., v may have a zero at the origin.
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We recall the definition of the points xj=xj, n ; they are the unique points
in [&1, 1] for which

|
xj, n

0
v(t) dt=

j
2n

, j=&n, ..., n. (4.1)

In particular, x0, n=0, x&n, n=&1, xn, n=1, and if we set I j=Ij, n=
[xj&1, n , xj, n] for j=1, ..., n and Ij=I j, n=[xj, n , x j+1, n] for j=&n, ..., &1,
then �j Ij, n=[&1, 1], and [Ij, n] j is a partition of [&1, 1] into subinter-
vals with the property

|
Ij, n

v(t) dt=
1

2n
.

The interval I0, n is not defined, and to have unified formulae we set
I0, n=I1, n .

We shall use the notation FtG if the ratio F�G lies between two positive
constants independently of the parameters and variables in the range for
which FtG is indicated.

We recall that

v(rt)�v(t) � 1 as t � 0\0 (4.2)

uniformly for r lying in any compact subinterval of (0, �) [10,
Theorem 1.2.1].

Lemma 1. For every {>0 there is a C such that for x, y # [&1, 1],
| y|�|x|

C \ | y|
|x|+

&{

�
v( y)
v(x)

�
1
C \ | y|

|x|+
&{

. (4.3)

In particular, for every {>0 there is a C such that

v(x)�C |x|&{ for all x # [&1, 1]. (4.4)

Proof. Since v(x)tv(&x), without loss of generality we may assume
that 0� y�x. For x� y�x�2 the inequalities follow from (4.2), thus let
0< y<x�2. Let 0<=<1 be arbitrary, and choose to this = a $>0 so that
for 0<s�2�t<s�$ we have v(s)�(1+=) v(t). This gives for x�$ the
inequalities
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v(2y)�(1+=) v( y)

v(4y)�(1+=) v(2y)

b

v(2my)�(1+=) v(2m&1y)

v(x)�(1+=) v(2my),

where m is chosen so that x�2<2my�x. On multiplying these inequalities
together we obtain

v(x)�(1+=)m+1 v( y)�2( |x|�| y| ){ v( y)

with {=log2(1+=). Since here 0<=<1 is arbitrary, this proves the lower
estimate in (4.3) for x�$.

Finally, when x>$, then the proof is the same, just for 2 jy>$ we have
to use the inequality v(2 j+1y)�Cv(2 jy) valid with some constant C,
because on the interval [$, 1] the function v is positive and continuous
(note that there can be at most log2 1�$ such j).

This proves the lower estimate in (4.3). The upper one can be similarly
proven.

Inequality (4.4) with x replaced by y follows if we set x=1 into (4.3). K

Lemma 2. For every {>0 there is a C>0 such that for '<1

|
'x

0
v(u) du�C'1&{ |

x

0
v(u) du for all x # [0, 1], (4.5)

and a similar estimate is true for x # [&1, 0]. More generally, if I/[0, x]
is an arbitrarily interval of length 'x, then

|
I

v(u) du�C'1&{ |
x

0
v(u) du for all x # [0, 1], (4.6)

and a similar estimate is true for negative x.

Proof. Inequality (4.5) can be obtained by making use of the substitu-
tion u='t on the left-hand side, and making use of (4.3). Let now
I=[$, $+'x]. If $�'x, then the integral on the left of (4.6) is at most as
large as the integral over [0, 2'x], hence in this case (4.6) follows from
(4.5). On the other hand, if $>'x, then v(t)tv(u) for t # I and u # [$, 2$],
hence

|
I

v(u) du�C
'x
$ |

2$

$
v(u) du,

281WEIGHTED POLYNOMIAL APPROXIMATION



furthermore by (4.5) we have

|
2$

$
v(u) du�|

2$

0
v(u) du�C \2$

x +
1&{

|
x

0
v(u) du.

Now (4.6) is a consequence of these formulae since we are considering the
case $>'x. K

Lemma 3. We have

|
x

0
v(t) dt=(1+o(1)) xv(x) as x � 0, (4.7)

and

|
x

0
v(t) dttxv(x) for x # [&1, 1]. (4.8)

As a consequence, for any =>0

|
yx

0
v(t) dt=(1+o(1)) yxv( yx)

=(1+o(1)) yxv(x) as x � 0 (4.9)

uniformly in =� y�1�=.

Proof. We may again assume x>0. Given =>0 we can choose by (4.5)
an =>'>0 such that we have

|
'x

0
v(u) du�= |

x

0
v(u) du

for all x # [0, 1]. Then there is a $>0 such that for 0<x<$ the inequality
v(t)�v(u)�1+= is true for all 0<x<$ and 'x<t, u<x. Thus,

|
x

0
v(t) dt�

1
1&= |

x

'x
v(t) dt�

1+=
1&=

v(x)(x&'x)�
1+=
1&=

xv(x),

and

|
x

0
v(t) dt�|

x

'x
v(t) dt�

1
1+=

v(x)(x&&x)�
1&=
1+=

xv(x),

and this proves formula (4.7) in the lemma.
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Relations (4.8)�(4.9) are immediate consequences, if we also use that v is
a slowly varying weight. K

Return now to the points xj=xj, n introduced in (4.1). In the following
proofs we shall frequently write xj instead of xj, n . Since for any fixed j�1

|
xj, n

0
v(t) dt=

j
2n

= j |
x1, n

0
v(t) dt,

it immediately follows from (4.9) that xj, n=(1+o(1)) jx1, n . In a similar
fashion can one prove that x& j, n=(1+o(1)) jx&1, n . Since v(&x)�v(x) � 1
as x � 0, we also have x&1, n=&(1+o(1)) x1, n , hence we can conclude
that for all fixed j (positive or negative)

xj, n=(1+o(1)) jx1, n . (4.10)

Note that (4.8) also implies that

xj, n t
j

nv(xj, n)
for all xj, n , j{0. (4.11)

Lemma 4. For every 0<{<1 there is a C such that for all j and k,
|k|� | j | we have

1
C \ | j |

|k|+
1&{

�
|x j, n |
|xk, n |

�C \ | j |
|k|+

1+{

. (4.12)

Proof. Assume again that j and k are positive. We have by (4.11)
xj tj�nv(x j), and xk tk�nv(xk). Therefore,

xj

xk
t

j
k

v(xk)
v(xj)

,

and if we apply (4.3) to the last fraction, then after rearrangement we
obtain

1
C1 \

j
k+

1�(1+{)

�
xj

xk
�C1 \ j

k+
1�(1&{)

,

and this is equivalent to what we needed to prove. K

Lemma 5. As n � �

|Ij+1, n |
|Ij, n |

� 1 (4.13)

uniformly in all the indices j.
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Proof. Since |Ij, n |=xj, n&xj&1, n for positive j and |Ij, n |=xj+1, n&x j, n

for j�0, for j=0, \1, \2 the statement follows from (4.10). Therefore, we
may assume without loss of generality that j�2 (for negative j the proof
is similar). From (4.12) it follows that for j�2 we have xj, n<Cxj&1, n with
some C, and hence from the slow variation of v we obtain that for every
=>0 there is a $>0 such that if x1, n<xj, n�$, then

1
2n

=|
Ij, n

v(t) dt t
1+=

|Ij, n | v(xj, n),

where F t
A G means that 1�A�F�G�A.

We apply this for j and j+1, and note that if $ is sufficiently small, then,
by the slow variation of v and by xj+1, n<Cxj, n established above, we have
v(xj, n) t

1+= v(xj+1, n). From these we obtain for xj, n # [x2, n , $]

|Ij+1, n | t
(1+=)3

|Ij, n |. (4.14)

Finally, on the interval [$, 1] the function v is uniformly continuous and
positive, from which (4.14) immediately follows for those indices for which
xj, n lies in this interval, provided n is sufficiently large. K

Note that the proof also gives

|Ij, n |=(1+o(1))
1

2nv(xj, n)
(4.15)

uniformly in j, and also that for the weight point !j, n of v on Ij, n defined
as

!j, n=2n |
Ij, n

tv(t) dt (4.16)

we have

v(xj&1, n)=(1+o(1)) v(x j, n)=(1+o(1)) v(!j, n) (4.17)

for j>1,

!j, n=(1+o(1))
xj&1, n+xj, n

2
(4.18)

for j�1,

v(xj, n)=(1+o(1)) v(xj+1, n)=(1+o(1)) v(!j, n) (4.19)
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for j<&1, and

!j, n=(1+o(1))
x j, n+xj+1, n

2
, (4.20)

for j�&1, and the o(1) in these relations is uniform in the indices j
indicated. Note that we have excluded j=1 in (4.17) and j=&1 in (4.19),
for v may have a singularity at the origin, nevertheless (4.18) and (4.20) are
true also in these cases.

In fact, (4.17) follows from ideas applied in the preceding proof (use the
slow variation of v on the interval Ij, n for j{ \1) and so only (4.18) needs
clarification and only for j=1, in which case it can be verified from (4.5)
and (4.7) and the slow variation of v, with arguments applied before.

Lemma 6. For every 0<{<1 there is a c>0 such that

|xj, n&xk, n |�c | j&k|1&{ |Ij, n | for all j, k, and n. (4.21)

Proof. First let j and k be positive.
If j�2�k�2 j, then we have by (4.12) 1�C�xj �xk�C with some C

independent of n, and then we get for example for k< j

|xj&xk |=xj&xk= :
k<s� j

|Is |t :
k<s� j

1
nv(xs)

t( j&k)
1

nv(xj)
t( j&k) |I j |,

where we used (4.15) and the slow variation of v.
If k< j�2, then

|xj&xk |=xj&xk txj tj�nv(xj)tj |I j |t( j&k) |I j |,

where we used (4.11) and (4.15). If, however, 2 j<k, then

|xj&xk |=xk&xj txk�c(k�j)1&{ xj

t(k�j)1&{ j�nv(xj)�ck1&{ |Ij |

t(k& j)1&{ |Ij | ,

where we used Lemma 4, (4.11) and (4.15).
Similar proof works if both j and k are negative. Finally, let, say, k be

negative and j positive. It follows from Lemma 4 that there is a C>1 such
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that if |k|>Cj, then |xk |>2xj . Thus, if |k|>Cj, then we can deduce from
the already proven cases

|xj&xk |t |xk |t |x&k |t |x&k&x j |

�c | |k|& j | 1&{ |Ij |t |k& j |1&{ |Ij |.

If, however, |k|�Cj, then by Lemma 4

|xj&xk |=xj+|xk |txj tj�nv(xj)tj |I j |t( j&k) |I j |. K

Lemma 7. Let L�4 be any fixed positive number. Then with the weight
points !j, n of v on Ij, n we have

2n |
Ij, n

log } x&t+iL |I j, n |
x&t } v(t) dt

=(1+o(1)) 2nv(!j, n) |
Ij, n

log } x&t+iL |I j, n |
x&t } dt

=(1+o(1))
1

|Ij, n | |Ij, n

log } x&t+iL |Ij, n |
x&t } dt (4.22)

as n � �, and this relation uniformly holds in j and x # R.

Proof. The last relation is a consequence of (4.15) and (4.17)�(4.19)
(for j=\1 use also (4.18) and (4.20) and the slow variation of v).

The first asymptotics is immediate for j{ \1, since in that case v(t)=
(1+o(1)) v(u) for t, u # Ij by the slow variance of v (cf. also Lemma 4).

Therefore, it is left to prove the first relation only for j=\1. Let, for
example, j=1. If we can show that for every {>0 there is a C (that may
depend on L) such that for any 0<'<1

|
'x1

0
log } x&t+iL |I1 |

x&t } v(t) dt

�C'1&{ |
x1

0
log }x&t+iL |I1 |

x&t } v(t) dt, (4.23)

then the preceding proof can be applied, for then first we choose an ' for
which the integral over [0, 'x1] is small compared to the integral over
[0, x1], and then apply that v(t)=(1+o(1)) v(u) uniformly in t, u #
['x1, n , x1, n] (cf. the argument in Lemma 4) and then apply again (now
with v(t)#1) that the integral over [0, 'x1] is small compared to the one
over [0, x1].

Thus, we have to prove (4.23). If |x|�2x1 , then the logarithmic factor
in both integrals is tlog |x+iLx1 |�|x|, and so in this case the claim
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follows from (4.5). If 2'x1�|x|�2x1 , then on the left hand side the
integrand before v(t) is at most log(2L�'), hence in this case the claim
follows from (4.5) (applied to {�2 instead of {) and from the fact that for
|x|�2x1 the integrand before v(t) on the right is at least

log
L |I1 |

|x|+|t|
�log L�3.

If, however, |x|�2'x1 , then (by omitting the integrands just to indicate
how we change the range of integration)

|
'x1

0
�|

t # I1: |x&t|�3'x1

,

therefore it is enough to show that

|
t # I1: |x&t|�3'x1

log }x&t+iL |I1 |
x&t } v(t) dt

�C'1&{ |
x1

0
log }x&t+iL |I1 |

x&t } v(t) dt. (4.24)

On the left we write the integral as the sum

:
�

k=0
|

t # I1: 3'x1�2k+1�|x&t|�3'x1�2k
.

Here in the k th integral

log }x&t+iL |I1 |
x&t }�log

4L
3'�2k .

Now we apply (4.6) to the (the one or two) interval(s) I of the kth integral,
which is of length at most 3'x1 �2k. This way we obtain that the left hand
side of (4.24) is not bigger than

2 :
�

k=0
\log

4L
3'�2k+ C \3'

2k+
1&{

|
x1

0
v(t) dt.

Here the last integral is clearly smaller than the integral on the right-hand
side of (4.23), and the sum in front of this integral can be written as

2 :
�

k=0
\log

4L2k

2' +\ 3'
4L2k+

{

(4L){ C \3'
2k+

1&2{

�CL'1&2{,

because the function (log x)�x{ is bounded on [1, �).

287WEIGHTED POLYNOMIAL APPROXIMATION



Here we have 1&2{ in the exponent, but since { was arbitrary, this does
not matter and the proof is complete. K
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